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ABSTRACT: Cloud Computing has 

revolutionized computing off late with several 

domains and applications resorting to the cloud 

architecture. However effective task scheduling 

and load balancing is critical for cloud based 

servers. This is typically a very challenging task 

keeping in mind the fact that cloud workload is a 

parameter that depends on several other 

parameters.  Moreover, due to the enormity of the 

data and its complexity, the use of machine 

learning or artificial intelligence based techniques 

is important for cloud workload estimation. 

Forecasting future workloads with high accuracy is 

especially challenging due to the randomness of the 

cloud workloads and also the non-deterministic 

nature of the governing or affecting parameters.  

Hence, due to the size and complexity of the data 

involved, finding regular patterns is a challenging 

task at hand. The present work proposes a back 

propagation based deep neural network architecture 

for cloud workload forecasting. Two different 

approaches employing steepest descent i.e. the 

Levenberg training rule and the scaled conjugate 

training rule have evaluated. The experiment uses 

the NASA cloud data set. The performance 

evaluation parameters have been chosen as mean 

absolute percentage error (MAPE), Mean Square 

Error (MSE), number of iterations and regression. 

It has been found that the Levenberg’s steepest 

descent approach outperforms the scaled conjugate 

gradient based approach in terms of the evaluation 

parameters. 
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I. INTRODUCTION 
Cloud Computing has become one of the 

most sought after technologies which plays a 

pivotal role in several domains resorting to the high 

levels of data complexity, complex computation or 

applications needing hybrid platforms [1]-[2]. One 

of the most important aspects of cloud systems 

management is the fact that cloud servers 

sporadically face sudden surges in the number of 

requests often termed as clou d workload. This 

workload, if unforeseen can result in crash of the 

cloud server if alternate provisions are not made to 

handle the cloud workload [3]-[5]. This in term 

needs the estimate of cloud workloads in advance 

considering several governing factors. This is 

majorly critical especially for applications such as 

e-commerce and finance which may see sudden 

surges in requests. Thus there is a clear necessity of 

cloud workload prediction using models which can 

estimate cloud workloads with high accuracy. 

Statistical techniques are not found to be as 

accurate as the contemporary artificial intelligence 

and machine learning based approaches [6]. In this 

paper, a back propagation based approach for 

estimating cloud workload is proposed employing 

deep neural networks. [7]. 

 

II.DEEP NEURAL NETWORKS 
Deep neural networks has evolved as one 

of the most effective machine learning techniques 

which has the capability to handle extremely large 

and complex datasets [8]. It is training neural 

networks which have multiple hidden layers as 

compared to the single hidden layer neural network 

architectures [9]-[10].  

The architectural view of a deep neural 

network is shown in figure 1, [11]. In this case, the 

outputs of each individual hidden layer is fed as the 

input to the subsequent hidden layer. The weight 

adaptation however can follow the training rule 

decided for the neural architecture. There are 

various configurations of hidden layers which can 

be the feed forward, recurrent or back propagation 

etc. 
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Figure. 1Architecture of Deep Neural Networks 

 

The figure above depicts the deep neural 

network architecture with multiple hidden layers. 

The output of the neural network however follows 

the following neural networks rule: 

𝐘 =  𝐗𝐢 . 𝐖𝐢   +    𝛉𝐢
𝐧
𝐢=𝟏                       (1) 

Here, 

Where,  

X are the inputs 

Y is the output 

W are the weights 

Ɵ is the bias. 

Training of ANN is of major importance before it 

can be used to predict the outcome of the data 

inputs. 

 

III. BACK PROPAGATION IN NEURAL 

NETWORKS 
Back propagation is one of the most 

effective ways to implement the deep neural 

networks with the following conditions: 

1) Time series behavior of the data 

2) Multi-variate data sets 

3) Highly uncorrelated nature of input vectors 

The essence of the back propagation based 

approach is the fact that the errors of each iteration 

is fed as the input to the next iteration. [11]-[13]. 

The error feedback mechanism generally is well 

suited to time series problems in which the 

dependent variable is primarily a function of time 

along with associated variables. Mathematically, 

𝐘 = 𝐟(𝐭, 𝐕𝟏 … . 𝐕𝐧)                               (2) 

Here, 

Y is the dependent variable 

f stands for a function of 

t is the time metric 

V are the associated variables 

n is the number of variables 

 

Typically, the output or the dependent 

variable can be linked not only to the present inputs 

but also on the previous outputs. Hence back 

propagation becomes even more effective for multi-

variate problems such as time series prediction 

problems. The back propagation based approach 

can be illustrated graphically in figure 2 [12].  

 

 
Figure.2 Back Propagation Mechnanism in 

Neural Networks 

 

The In case of back propagation, the 

weights of a subsequent iteration doesn’t only 

depend on the conditions of that iteration but also 

on the weights and errors of the previous iteration 

mathematically given by: 

 

𝐖𝐤+𝟏 = 𝐟(𝐖𝐤, 𝐞𝐤, 𝐕)                    (3) 

Here, 

Wk+1 are the weights of a subsequent iteration 

Wk  are the weights of the present iteration 

ek  is the present iteration error 

V is the set of associated variables 
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In general, back propagation is able to minimize 

errors faster than feed forward networks, however at 

the cost of computational complexity at times. 

However, the trade off between the computational 

complexity and the performance can be clearly 

justified for large, complex and uncorrelated 

datasets for cloud data sets [1]. 

 

IV. PROPOSED APPROACH 
The proposed approach applies the 

gradient descent approach in back propagation on 

the benchmark NASA dataset [12]. The gradient 

descent approach tries to effectively reduce the error 

in each iteration with the maximum rate of change 

with respect to each iteration. The gradient descent 

algorithms (GDAs) generally exhibit: 

1) Relatively lesser memory requirement 

2) Relatively faster convergence rate   

The essence of this approach is the 

updating of the gradient vector g, in such as way 

that it reduces the errors with respect to weights in 

the fastest manner. Mathematically, let the gradient 

be represented by g and the descent search vector by 

p, then 

𝐩𝟎 = −𝐠𝟎                      (4) 

Where,   

g0 denotes the gradient given by 
∂e

∂w
 

The sub-script 0 represents the starting iteration 

The negative sign indicates a reduction in the errors 

w.r.t. weights 

The tradeoff between the speed and accuracy is 

clearly given by the following relations: 

𝐖𝐤+𝟏 =  𝐖𝐤 − 𝛂𝐠𝐱 ,   𝛂 =
𝟏

µ
               (5) 

Here, 

wk+1 is the weight of the next iteration  

wk  is the weight of the present iteration  

gx is the gradient vector 

µ is the step size for weight adjustment in each 

iteration. 

The above equation shows stability in 

errors with monotonic decrease but needs higher 

number of iterations, specifically more in deep 

learning architectures due to direct computation of 

the Hessian Matrix of gradients. A faster approach 

is given by: 

 

𝐖𝐤+𝟏 =  𝐖𝐤 − [𝐉𝐊
𝐓𝐉𝐤]−𝟏𝐉𝐊

𝐓𝐞𝐤     (6) 

 

In this case, the number of iterations 

reduce at the cost of the stable monotonic reduction 

of the errors with respect to weights.  

Here, 

Jk  represents the Jacobian Matrix given by 
∂2e

∂w
2 

Jk
Trepresents the transpose of the Jacobian Matrix. 

The speed of convergence is due to the 

indirect computation of the Hessian Matrix by using 

the Jacobian computation given by: 

𝐇 = 𝐉𝐤
𝐓 𝐉𝐤               (7) 

And 

𝐠 = 𝐉𝐤
𝐓 𝐞               (8) 

 

Here, 

H is the Hessian Matrix 

 

Finally, the GDA with both speed and stability 

optimized is given by the Levenberg’s Training rule 

[15]: 

𝐖𝐤+𝟏 =  𝐖𝐤 −  𝐉𝐊
𝐓𝐉𝐤 + µ𝐈 

−𝟏
𝐉𝐊

𝐓𝐞𝐤        (9) 

 

Here, 

The differentiating factor is the 

combination co-efficient µ which optimizes the 

GDA by adjusting the weights and thus the 

gradient.  

K is the sub-script representing the 

iteration number 

The activation function used for the algorithm is the 

tan-sig function mathematically defined as: 

𝐭𝐚𝐧𝐬𝐢𝐠 𝐱 =
𝟐

𝟏+𝐞−𝟐𝐱
− 𝟏                    (10) 

For the sake of comparison in terms of the 

accuracy of estimation, the other low space 

complexity scaled conjugate gradient (SCG) 

approach is also analyzed which is mathematically 

governed by the following training rule: 

𝐊𝟎 = −𝐝𝟎              (11) 

Here, 

K represents the initial gradient search vector 

d is the actual gradient 

𝐰𝐤+𝟏 = 𝐰𝐤 + 𝛍𝐤𝐝𝐤          (12) 

Here, 

wk+1 is the weight of the subsequent iteration of 

training 

wk  is the weight of the present iteration of training 

μk  is the step combination co-efficient values 

 

V. EXPERIMENTAL RESULTS 
The data is bifurcated randomly into 

training and testing in the ratio of 70:30. The 

evaluation of the proposed approach is evaluated in 

terms of the following parameters: 

1) Mean Absolute Percentage Error (MAPE), 

mathematically expressed as: 

 

𝐌𝐀𝐏𝐄 =
𝟏𝟎𝟎

𝐌
 

𝐄−𝐄𝐭|

𝐄𝐭

𝐍
𝐭=𝟏                            (13) 

Here Et and Et
~ 

stand for the predicted and actual 

values respectively. 

The number of predicted samples is indicated by N. 
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The MAPE facilitates in estimating the 

errors more accurately by nullifying the negative 

errors which may cancel out with values of the 

positive errors.  

2) Mean Square Error (MSE), mathematically 

expressed as: 

𝐌𝐒𝐄 =
𝟏

𝐍
 (𝐄 − 𝐄𝐭)𝐢

𝟐𝐍
𝐢=𝟏                           (14) 

The mean square error is a metric to 

evaluate the training performance and deciding the 

epoch to terminate training. If the mse becomes 

stable for 6 or more consecutive iterations, the 

training is stopped, or if the maximum number of 

iterations is reached. 

 

3) Regression 

The extent of similarity between two 

variables is given by the regression where the 

maximum value is 1 and the minimum is 0. 

The proposed scheme is tested using 

ordinarily image processing. From the simulation of 

the experiment results, we can draw to the 

conclusion that this method is robust to many kinds 

of watermark images. 

 
Figure.3 Obained MAPE for the Levenberg’s 

steepest descent appraoch 

 
Figure.4 Obained MAPE for the Scaled 

Conjugae Gradient steepest descent appraoch 

 

 
Figure 5. (a) MSE Plot for Levenberg’s steepest 

descent 

 

 
Figure 5(b). MSE Plot for Scaled Conjugae 

Gradient steepest descent 
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From figures 3 and 4, it can be clearly 

observed that while the Levenberg’s steepest 

desent attains an MAPE value of 3.65%, the SCG’s 

steepest descent attains an MAPE of 4.78%, 

thereby clearly indicating the fact that the previous 

appraoch is more accurate.  

Figure 5(a) and 5(b) depict the comparison 

of the training progress in terms of the variation of 

MSE as a function of the epocts or iterations. 

Again, the Levenberg’s steepest desent attains an 

MSE of 13.1523 at 11 iterations while the SCG 

based steepest descent attains an MSE of 31.0529 

at 26 iterations. This indicates the the Levenberg’s 

appraoch not only outperforms the SCG based 

appraoch in terms of time complexity, but also in 

terms of the accuracy of prediction and mean 

square error. The number of iterations is a critiical 

parameters keeping in mind the fact that as the 

number of iterations increase, the time complexity 

of the system also increases.  

 

 
Figure 6. (a) Regression for Levenberg based 

steepest descent 

 

 
Figure 6. (b) Regression for SCG based steepest 

descent 

Figure 6(a) and 6(b) compare the 

regression obtained by both the approaches for the 

training, testing, validation and overall instances. It 

can be clearly seen that the manifestation of lower 

MAPE and MSE is evident on the regression 

curves too. While the Levenberg steepest descent 

attains and overall regression of 0.98674, the SCG 

based steepest descent attains an overall regression 

of 0.9418 thereby clearly indicating that the 

previous approach is more accurate. 

 

Table -1 Summary of Obtained Results 

 Levenberg 

based 

Steepest 

Decent 

SCG 

based 

Steepest 

Descent 

MAPE 3.65 4.78 

MSE 13.1523 31.0259 

ITERATIONS 11 26 

REGRESSION 0.98674 0.9418 

 

Table 1 shows the comparative analysis of 

both the approaches in terms of the evaluation 

parameters for the estimation of cloud workloads. It 

can be clearly seen that the Levenberg based 

steepest descent outperforms the SCG based 

steepest descent in terms of all the evaluation 

parameters depicting speed of convergence of the 

algorithm as well as accuracy. 

 

VI.CONCLUSION 
It can be concluded form the previous 

discussions that the extensive use of cloud based 

platforms for various applications has made it 

necessary to estimate cloud workloads well in 

advance so as to manage constrained resources. 

The estimation is however non-trivial keeping in 

mind the staggering amount of data that is to be 

analyzed for cloud based platforms. Hence one of 

the most effective choices is to use machine 

learning based techniques for the purpose. In this 

work, two different machine learning approaches 

namely the Levenberg’s backpropagation and the 

scaled conjugate gradient based approaches have 

been developed to estimate cloud workloads. The 

performance metrics have been chose to be the 

mean square error, mean absolute percentage error 

and the regression. It has been shown that the 

proposed approach attains a predication accuracy 

of over 95% for both cases and the Levenberg’s 

approach outperforms the SCG. 
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